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Non-Boolean FMs

Operating System

o

Kernel

Provide API

Sample API
Scripts

Sample API Scripts = Provide API
(Source Dir) . contains(“src”)
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Sample non-Boolean constraint

APl _SCRIPTS && LEVELS < 32 &&

(BLOCK_SIZE * BLOCK _COUNT + SWAP_ SIZE < MEM SIZE) & &
BASE LIB contains (LINUX ? “.so” : “.dIl") & &

SRC_DIR contains (“src”)

= ENABLE_API




Non-Boolean FMs

Contain constraints with:

B Arithmetic, Relational and String operations
B Integer, Float, String, Boolean operands

SAT checking is hard

B Boolean Constraints — NP Complete
B Integer, String and Float — undecidable in general
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The Goal:
What constraints are used in practice?

Why is that important?




We need efficient reasoning to:

m Better support configuration guidance
® Do model analyses - dead features detection
m List valid configurations




However:

m Constraints are hard to solve, potentially
undecidable

m Can we use existing tools to reason over them?




Benchmark for tool developers

®m Add support for new constraints
®m Optimize existing tools




Subject of the study

Embedded Configurable
Operating System

® Non-Boolean Feature Model
® Publicly Available

€GOS




eCos

116 Architectures

v % eCos HAL
v [ Platform-independent HAL options
¥ Provide eCos kemel support
¥ HAL exception support
[ Use static MMU tables.
Qi o ciogrostc output o Gebug channel
[* [ab] Grouped libraries for linking
b 3 HAL interrupt handling

~  [ZJ ROM monitor support
P ¥ Enable use of virtual vector calling interface

[C Behave as a ROM monitor
¥ Work with a ROM monitor
Il File I/O operations via GDB

Configuration done using the Configurator




eCos

116 Architectures Each is a Feature Model

+ 4 eCos HAL < eCos HAL

= [ Platform-independent HAL options /

¥ Provide eCos kemel support . :
Platform-independent ROM Monitor

¥ HAL exception support HAL oot c A
[ Use static MMU tables. options uppor

(¥ Route diagnostic output to debiig channel
[ [ab] Grouped libraries for linking
b 3 HAL interrupt handling

~  [ZJ ROM monitor support
P ¥ Enable use of virtual vector calling interface

I Behave as a ROM monitor «——— |
¥ Work with a ROM monitor

I File I/O operations via GDB

Use static Behave as a
MMU Tables | ROM monitor

Configuration done using the Configurator




CDL

Domain-specific variability language provided by eCos

cdl option CYGNUM KERNEL SCHED BITMAP SIZE {
display "Bitmap size"

requires CYGNUM KERNEL SCHED PRIORITIES > 2

flavor data
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Domain-specific variability language provided by eCos

cdl option CYGNUM KERNEL SCHED BITMAP SIZE ({
display "Bitmap size"
requires CYGNUM KERNEL SCHED PRIORITIES > 2

flavor data
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Different aspects for analyses.




Analyzing eCos

Different aspects for analyses.

Syntactic
® Models as created by eCos developers

Semantic
®m Configuration setting used by code generator

® The behavior of the Configurator

* Richer semantics, for interactive support

* E.g., Is a feature active in the GUI or not -



Methodology

The Toolchain

CDL Modified 116 CDL CDL Models
. — > eCos - > — >
Files ) Models Parser
Configurator
CDL Semantics Type AST
Processor ‘ Inference ‘ Nodes
Semantic\ ’/Syntactic
Tools for

gathering the statistics




Methodology

" Reverse engineering
formal specification of
~ CDL semantics

%

CDL Semantics Type
Processor ‘ Inference

{Dynamic type inference




The Results

Summary statistics (min, max, med)
over 116 eCos models



1. Feature Types Proportions

eCos has 3 types of features

® Number (Integer and Float)
m String
m Boolean

Why?

B Many non-Boolean features can not be
ignored




1. Feature Types Proportions

Non-Boolean

Total # of features: types
40

1230 Median

1312 Maximum 07

1159 Minimum 20

10 —

| | |
Boolean (46%) Number (25%) String (29%)

Figure: feature types - median value




2. Restriction on non-Boolean types

Static constraints effectively specifying types
(sets of values)

m Ranges - 1to 7/

m Constants - “ROM”

B Enumerations - {1, 2, 3}

m Unrestricted - just string or integer




2. Restriction on non-Boolean types

Advantages:

® Model simplification
®m Shrinking the domain
m Replace constants occurrences with the value

B Enumerations are “easier” than integers




2. Restriction on non-Boolean types

70 —
60 —
50 —
40 —
30 —
20 —
0 — _ _

Constants (5%) Enums (5%) Ranges (15%)  Unrestricted (75%)

Figure: restrictions - median value




3. The Constraints (Syntactic level)

Constraints classification:

®m Purely Boolean
> Boolean operators and features
> A&& B, A| B

m Purely non-Boolean
>Non-Boolean operators and features
>A+ 10 ==

m Mixed
>B && (A+10 == C)




3. The Constraints (Syntactic level)

We want to do efficient analysis over the
constraints

m \We want to better understand the hardness of
the Real World constraints

®m Purely Boolean - SAT solving




3. The Constraints (Syntactic level)

Number of constraints:

1015 Median
1269 Maximum
916 Minimum °° ~

400 —

200 —

0 —_

| I |
Mixed (55) Purely Boolean (172) Purely non-Boolean (792)

Figure: No. of constraints - median




4. Semantic Constraints

Capturing the configurator behavior

~ (2 Source-level debugging support Macro CYGDBG_HAL DEBUG_GDB_BREAK_SUPPORT
" Include GDB stubs in HAL File
B "cluce GDb el e suppotorsubs Erabled Pl
¥ Include GDB external break support when no stubs Def'ault‘l..-"alue CYGDEG_HAL _DEBUG_GDE_INCLUDE_STUBS
, , Activelf CYGINT_HAL DEBUG_GDB_STUBS_BREAK
I Include GDB muiti-threading debug support Requires CYGDBG_HAL DEBUG_GDB_INCLUDE_STUBS

[ab] Number of times to retry sending a $0 packet 0
[ab] Timeout period for GDB packets 500
8 Location of CRC32 table RAM
P (3 ROM monitor support
W File I/O operations via GDB
" Build Compiler sanity checking tests

[EE] Common HAL tests tests/c
P %% FUJITSU architecture v3 0

Figure: The configurator




4. Semantic Constraints

Capturing the configurator behavior

- D source-level dehugg|ng suppnrt Macro CTGDBG_HAL_DEBUG_GDB_BREAK_SUPPGM
™ Include GDB stubs in HAL File
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Figure: Enabling features




4. Semantic Constraints

Capturing the configurator behavior

- D source-level dehugg|ng suppnrt Macro CTGDBG_HAL_DEBUG_GDB_BREAK_SUPPGM
™ Include GDB stubs in HAL File
11clude GDB external break support for stubs Enabled False
e' clude GDB extemal break support when no stubs DefaultValue CYGDBG_HAL DEBUG_GDB_INCLUDE_STUBS
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Figure: Providing the data




3. Semantic Constraints

Capturing the configurator behavior

> [ Source- i Macro CYGDBG_HAL DEBUG_GDB_BREAK_SUPPORT
Include GDB stubs in HAL File
E— Enabled False

Wt Include GDB external break support for s2ibs

B Include GDB extemal break support when no ST DefaultValue CYGDBG_HAL DEBUG_GDB_INCLUDE_STUBS

¥ Include GDB multi-threading debug support

i ) Requires CYGDBG_HAL DEBUG GDB_INCLUDE STUBS
[ab] Number of times to retry sending a $0 packet 0 ~—
[ab] Timeout period for GDB packets 500
8 Location of CRC32 table RAM

P (3 ROM monitor support
W File I/O operations via GDB
" Build Compiler sanity checking tests

[EE] Common HAL tests tests/c
P %% FUJITSU architecture v3 0

Figure: A constraint




4. Semantic Constraints

Capturing the configurator behavior

p Resolve conflicts x

| Continue | | Cancel | |l|

Conflict Property
Unsatisfied Reqmres CYGDBG_HAL DEBUG GDB_INCLUDE_STUBS

Heqt.llres rC"[’IE[)}E!G HAL DEBUG GDB_BREAK _ SUPPOR

Item
CYGDBG_HAL_DEBUG_GDB...
CYGDBG_HAL DEBUG_GDB... Unsatisfied

: MNone All
Proposed Solutions:
Item Value
[ CYGDBG HAL DEBUG G... Disabled -
¥ CYGSEM_HAL USE ROM... Disabled... D
¥ CYGDBG_HAL DIAG TO... Enabled
¥ CYGDBG_HAL DEBUG G... Enabled v

Figure: Conflict




4. Semantic Constraints

Capturing the configurator behavior
We transform the model:

®m Enable state variables - enabled var
m Data variables - data var
m Constraints mapping the conflicts




4. Semantic Constraints

Semantic constraints classification:

®m Purely Boolean
> Enabled state variables
> Boolean operators

®m Purely non-Boolean
> Data state variables
> non-Boolean operators - relational, string, arithmetic

® Mixed




4. Semantic Constraints

Number of constraints: ,,, _
616 Med!an String:
686 M.a)qmum 300 — LIBS data |var
593 Minimum contains
200 — libtarget.a

_ 100 —
Median number of
variables: 0 -
420 Data | | |

: Purely Purely

521 Enabled Mixed (202) Boolean (412) non-Boolean (2)

Figure: Number of occurrences

median value -



5. Semantic Expansion - Patterns

Sample eCos pattern:
(1 <
(

((
(RTC_NUMERATOR data *

(((0OSC_MAIN data * PLL MULTIPLIER data) / PLL DIVIDER data)/2)

)
/ (TIMER TC enabled ? 32 : 16)
) /RTC_DENOMINATOR data)/ 1000000000

)
)




5. Semantic Expansion - Patterns

Patterns:
axyY z b, max. occurrences = 2
axXY /Z i b, max. occurrences = 2
aXY /PZ < b, max.occurrences =1
axXYZ/(a+B)PQ 2 b, max. occurrences = 2

I\




More details in the paper

B Boolean, number and string operator occurrence
frequency at semantic and syntactic
B Explanation of the semantics

B All 116 models as Clafer models are available @
http://gsd.uwaterloo.ca/FOSD11




Conclusions

B Studied 116 real-world non-Boolean FM

B ~50% of features are non-Boolean (numbers and strings)
B ~/0% of constraints are non-Boolean

B Some constraints are complex (e.g. non-linear)

B Provided 116 models as a benchmark for tool builders

B Such non-Boolean models are likely to occur in embedded
systems

Future:

B Provide reasoning techniques that work on these
constraints




Thank you!

Questions?
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