
A Study of non-Boolean Constraints
in Variability Models of an

Embedded Operating System

FOSD 2011

Leonardo Passos, Marko Novakovic, Yingfei Xiong,
Krzysztof Czarnecki @ University of Waterloo
Thorsten Berger @ University of Leipzig
Andrzej Wasowski @ IT University of Copenhagen

2

 Contents

 Non-Boolean FMs

 Motivation

 eCos

 Results

➔Non-linear arithmetic constraints

 Conclusions

FOSD 11

3

 Non-Boolean FMs

Operating System

Kernel

Sample API
ScriptsProvide API

Sample API Scripts  Provide API

4

 Non-Boolean FMs

Operating System

Kernel

Sample API
ScriptsProvide API

Sample API Scripts  Provide API

Priority Levels
integer

Priority Levels  1 && Priority Levels 32

5

 Non-Boolean FMs

Operating System

Kernel

Sample API
ScriptsProvide API

Sample API Scripts  Provide API

Source Dir
string

(Source Dir) . contains(“src”)

6

 Sample non-Boolean constraint

API_SCRIPTS LEVELS ≤ 32 

(BLOCK_SIZE * BLOCK_COUNT + SWAP_SIZE ≤ MEM_SIZE) &&

BASE_LIB contains (LINUX ? “.so” : “.dll”) &&

SRC_DIR contains (“src”)

 ENABLE_API

7

 Non-Boolean FMs

 Arithmetic, Relational and String operations
 Integer, Float, String, Boolean operands

Contain constraints with:

SAT checking is hard

 Boolean Constraints  NP Complete
 Integer, String and Float  undecidable in general

8

 Motivation

The Goal:

What constraints are used in practice?

9

 Motivation

The Goal:

What constraints are used in practice?

 Why is that important?

10

 Motivation

 We need efficient reasoning to:

 Better support configuration guidance

 Do model analyses – dead features detection

 List valid configurations

11

 Motivation

 However:

 Constraints are hard to solve, potentially

 undecidable

 Can we use existing tools to reason over them?

12

 Motivation

 Add support for new constraints

 Optimize existing tools

 Benchmark for tool developers

13

 Subject of the study

 Non-Boolean Feature Model
 Publicly Available

Embedded Configurable
Operating System

14

116 Architectures

Configuration done using the Configurator

 eCos

15

116 Architectures

Configuration done using the Configurator

eCos HAL

ROM Monitor
Support

Behave as a
ROM monitor

Platform-independent
HAL options

Use static
MMU Tables

...

Each is a Feature Model

 eCos

16

...

cdl_option CYGNUM_KERNEL_SCHED_BITMAP_SIZE {
 display "Bitmap size"

 requires CYGNUM_KERNEL_SCHED_PRIORITIES > 2

 flavor data
}
...

Domain-specific variability language provided by eCos

 CDL

16

17

...

cdl_option CYGNUM_KERNEL_SCHED_BITMAP_SIZE {
 display "Bitmap size"

 requires CYGNUM_KERNEL_SCHED_PRIORITIES > 2

 flavor data
}
...

 CDL

17

Domain-specific variability language provided by eCos

18

...

cdl_option CYGNUM_KERNEL_SCHED_BITMAP_SIZE {
 display "Bitmap size"

 requires CYGNUM_KERNEL_SCHED_PRIORITIES > 2

 flavor data
}
...

 CDL

18

Domain-specific variability language provided by eCos

19

 Analyzing eCos

Different aspects for analyses.

20

 Analyzing eCos

 Models as created by eCos developers

Different aspects for analyses.

Syntactic

 Configuration setting used by code generator

 The behavior of the Configurator

● Richer semantics, for interactive support

● E.g., is a feature active in the GUI or not

Semantic

21

The Toolchain

CDL
Files

Modified
eCos

Configurator

116 CDL
Models

CDL Models
Parser

AST
Nodes

CDL Semantics
Processor

Tools for
gathering the statistics

 Methodology

21

Type
Inference

SyntacticSemantic

2222

CDL
Files

Modified
eCos

Configurator

116 CDL
Models

CDL Models
Parser

AST
Nodes

CDL Semantics
Processor

 Methodology

Type
Inference

Dynamic type inference

Reverse engineering
formal specification of
CDL semantics

 The Results

Summary statistics (min, max, med)
over 116 eCos models

24

 1. Feature Types Proportions

 Number (Integer and Float)
 String
 Boolean

eCos has 3 types of features

Why?

 Many non-Boolean features can not be
 ignored

25

 1. Feature Types Proportions

Figure: feature types - median value

Total # of features:

1230 Median
1312 Maximum
1159 Minimum

Non-Boolean
types

26

 2. Restriction on non-Boolean types

Static constraints effectively specifying types
(sets of values)

 Ranges – 1 to 7

 Constants – “ROM”

 Enumerations – {1, 2, 3}

 Unrestricted – just string or integer

27

 2. Restriction on non-Boolean types

Advantages:

 Model simplification

 Shrinking the domain

 Replace constants occurrences with the value

 Enumerations are “easier” than integers

28

 2. Restriction on non-Boolean types

Figure: restrictions - median value

29

 3. The Constraints (Syntactic level)

 Purely Boolean
➔ Boolean operators and features
➔ A && B, A || B

 Purely non-Boolean
➔Non-Boolean operators and features
➔ A + 10 == C

 Mixed
➔ B && (A + 10 == C)

Constraints classification:

30

 3. The Constraints (Syntactic level)

We want to do efficient analysis over the
constraints

 We want to better understand the hardness of

 the Real World constraints

 Purely Boolean – SAT solving

31

 3. The Constraints (Syntactic level)

Number of constraints:

1015 Median
1269 Maximum
916 Minimum

Figure: No. of constraints - median
value

32

 4. Semantic Constraints

32

Capturing the configurator behavior

Figure: The configurator

33

 4. Semantic Constraints

33

Capturing the configurator behavior

Figure: Enabling features

34

 4. Semantic Constraints

34

Capturing the configurator behavior

Figure: Providing the data

35

 3. Semantic Constraints

35

Capturing the configurator behavior

Figure: A constraint

36

 4. Semantic Constraints

36

Capturing the configurator behavior

Figure: Conflict

37

 4. Semantic Constraints

37

Capturing the configurator behavior

We transform the model:

 Enable state variables – enabled_var

 Data variables – data_var

 Constraints mapping the conflicts

38

Semantic constraints classification:

 Purely Boolean
➔ Enabled state variables
➔ Boolean operators

 Purely non-Boolean
➔ Data state variables
➔ non-Boolean operators – relational, string, arithmetic

 Mixed

 4. Semantic Constraints

38

39

 4. Semantic Constraints

Figure: Number of occurrences
median value

Number of constraints:
616 Median
686 Maximum
593 Minimum

Median number of
variables:
420 Data
521 Enabled

39

String:
LIBS_data_var
contains
libtarget.a

40

 5. Semantic Expansion - Patterns

40

Sample eCos pattern:

(1 ≤
 (
 ((
 (RTC_NUMERATOR_data ∗
 (((OSC_MAIN data PLL_MULTIPLIER_data) / PLL_DIVIDER_data)/2)∗
)
 /(TIMER_TC_enabled ? 32 : 16)
)/RTC_DENOMINATOR_data)/ 1000000000
)
)

41

 5. Semantic Expansion - Patterns

41

Patterns:

aXY 
≤

b, max. occurrences = 2

aXY / Z 
≤

b, max. occurrences = 2

aXY / PZ ≤ b, max. occurrences = 1

aXYZ/(α+β)PQ b, max. occurrences = 2

≤

42

 More details in the paper

42

 Boolean, number and string operator occurrence
 frequency at semantic and syntactic
 Explanation of the semantics

 All 116 models as Clafer models are available @
 http://gsd.uwaterloo.ca/FOSD11

43

 Conclusions

 Studied 116 real-world non-Boolean FM
 ~50% of features are non-Boolean (numbers and strings)
 ~70% of constraints are non-Boolean
 Some constraints are complex (e.g. non-linear)
 Provided 116 models as a benchmark for tool builders

 Such non-Boolean models are likely to occur in embedded
 systems

Future:

 Provide reasoning techniques that work on these
 constraints

 Thank you!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

