A Study of non-Boolean Constraints
In Variability Models of an

Embedded Operating System

FOSD 2011

Leonardo Passos, Marko Novakovic, Yingfei Xiong,

Krzysztof Czarnecki @ University of Waterloo

Thorsten Berger @ University of Leipzig
Andrzej Wasowski @ IT University of Copenhagen

®m Non-Boolean FMs
m Motivation
meCos
m Results
>Non-linear arithmetic constraints

m Conclusions

Non-Boolean FMs

Operating System

o

Kernel

Provide API

Sample API
Scripts

Sample API Scripts = Provide API

Non-Boolean FMs

Operating System

o

Kernel

Provide API

Sample API
Scripts

Sample API Scripts = Provide API
Priority Levels > 1 && Priority Levels < 32

Priority Levels
integer

Non-Boolean FMs

Operating System

o

Kernel

Provide API

Sample API
Scripts

Sample API Scripts = Provide API
(Source Dir) . contains(“src”)

Source Dir
string

Sample non-Boolean constraint

APl _SCRIPTS && LEVELS < 32 &&

(BLOCK_SIZE * BLOCK _COUNT + SWAP_ SIZE < MEM SIZE) & &
BASE LIB contains (LINUX ? “.so” : “.dIl") & &

SRC_DIR contains (“src”)

= ENABLE_API

Non-Boolean FMs

Contain constraints with:

B Arithmetic, Relational and String operations
B Integer, Float, String, Boolean operands

SAT checking is hard

B Boolean Constraints — NP Complete
B Integer, String and Float — undecidable in general

The Goal:
What constraints are used in practice?

The Goal:
What constraints are used in practice?

Why is that important?

We need efficient reasoning to:

m Better support configuration guidance
® Do model analyses - dead features detection
m List valid configurations

However:

m Constraints are hard to solve, potentially
undecidable

m Can we use existing tools to reason over them?

Benchmark for tool developers

®m Add support for new constraints
®m Optimize existing tools

Subject of the study

Embedded Configurable
Operating System

® Non-Boolean Feature Model
® Publicly Available

€GOS

eCos

116 Architectures

v % eCos HAL
v [Platform-independent HAL options
¥ Provide eCos kemel support
¥ HAL exception support
[Use static MMU tables.
Qi o ciogrostc output o Gebug channel
[* [ab] Grouped libraries for linking
b 3 HAL interrupt handling

~ [ZJ ROM monitor support
P ¥ Enable use of virtual vector calling interface

[C Behave as a ROM monitor
¥ Work with a ROM monitor
Il File I/O operations via GDB

Configuration done using the Configurator

eCos

116 Architectures Each is a Feature Model

+ 4 eCos HAL < eCos HAL

= [Platform-independent HAL options /

¥ Provide eCos kemel support . :
Platform-independent ROM Monitor

¥ HAL exception support HAL oot c A
[Use static MMU tables. options uppor

(¥ Route diagnostic output to debiig channel
[[ab] Grouped libraries for linking
b 3 HAL interrupt handling

~ [ZJ ROM monitor support
P ¥ Enable use of virtual vector calling interface

I Behave as a ROM monitor «——— |
¥ Work with a ROM monitor

I File I/O operations via GDB

Use static Behave as a
MMU Tables | ROM monitor

Configuration done using the Configurator

CDL

Domain-specific variability language provided by eCos

cdl option CYGNUM KERNEL SCHED BITMAP SIZE {
display "Bitmap size"

requires CYGNUM KERNEL SCHED PRIORITIES > 2

flavor data

CDL

Domain-specific variability language provided by eCos

cdl option CYGNUM KERNEL SCHED BITMAP SIZE ({
display "Bitmap size"

requires CYGNUM KERNEL SCHED PRIORITIES > 2

flavor data

CDL

Domain-specific variability language provided by eCos

cdl option CYGNUM KERNEL SCHED BITMAP SIZE ({
display "Bitmap size"
requires CYGNUM KERNEL SCHED PRIORITIES > 2

flavor data

Analyzing eCos

Different aspects for analyses.

Analyzing eCos

Different aspects for analyses.

Syntactic
® Models as created by eCos developers

Semantic
®m Configuration setting used by code generator

® The behavior of the Configurator

* Richer semantics, for interactive support

* E.g., Is a feature active in the GUI or not -

Methodology

The Toolchain

CDL Modified 116 CDL CDL Models
. — > eCos - > — >
Files) Models Parser
Configurator
CDL Semantics Type AST
Processor ‘ Inference ‘ Nodes
Semantic\ ’/Syntactic
Tools for

gathering the statistics

Methodology

" Reverse engineering
formal specification of
~ CDL semantics

%

CDL Semantics Type
Processor ‘ Inference

{Dynamic type inference

The Results

Summary statistics (min, max, med)
over 116 eCos models

1. Feature Types Proportions

eCos has 3 types of features

® Number (Integer and Float)
m String
m Boolean

Why?

B Many non-Boolean features can not be
ignored

1. Feature Types Proportions

Non-Boolean

Total # of features: types
40

1230 Median

1312 Maximum 07

1159 Minimum 20

10 —

| | |
Boolean (46%) Number (25%) String (29%)

Figure: feature types - median value

2. Restriction on non-Boolean types

Static constraints effectively specifying types
(sets of values)

m Ranges - 1to 7/

m Constants - “ROM”

B Enumerations - {1, 2, 3}

m Unrestricted - just string or integer

2. Restriction on non-Boolean types

Advantages:

® Model simplification
®m Shrinking the domain
m Replace constants occurrences with the value

B Enumerations are “easier” than integers

2. Restriction on non-Boolean types

70 —
60 —
50 —
40 —
30 —
20 —
0 — _ _

Constants (5%) Enums (5%) Ranges (15%) Unrestricted (75%)

Figure: restrictions - median value

3. The Constraints (Syntactic level)

Constraints classification:

®m Purely Boolean
> Boolean operators and features
> A&& B, A| B

m Purely non-Boolean
>Non-Boolean operators and features
>A+ 10 ==

m Mixed
>B && (A+10 == C)

3. The Constraints (Syntactic level)

We want to do efficient analysis over the
constraints

m \We want to better understand the hardness of
the Real World constraints

®m Purely Boolean - SAT solving

3. The Constraints (Syntactic level)

Number of constraints:

1015 Median
1269 Maximum
916 Minimum °° ~

400 —

200 —

0 —_

| I |
Mixed (55) Purely Boolean (172) Purely non-Boolean (792)

Figure: No. of constraints - median

4. Semantic Constraints

Capturing the configurator behavior

~ (2 Source-level debugging support Macro CYGDBG_HAL DEBUG_GDB_BREAK_SUPPORT
" Include GDB stubs in HAL File
B "cluce GDb el e suppotorsubs Erabled Pl
¥ Include GDB external break support when no stubs Def'ault‘l..-"alue CYGDEG_HAL _DEBUG_GDE_INCLUDE_STUBS
, , Activelf CYGINT_HAL DEBUG_GDB_STUBS_BREAK
I Include GDB muiti-threading debug support Requires CYGDBG_HAL DEBUG_GDB_INCLUDE_STUBS

[ab] Number of times to retry sending a $0 packet 0
[ab] Timeout period for GDB packets 500
8 Location of CRC32 table RAM
P (3 ROM monitor support
W File I/O operations via GDB
" Build Compiler sanity checking tests

[EE] Common HAL tests tests/c
P %% FUJITSU architecture v3 0

Figure: The configurator

4. Semantic Constraints

Capturing the configurator behavior

- D source-level dehugg|ng suppnrt Macro CTGDBG_HAL_DEBUG_GDB_BREAK_SUPPGM
™ Include GDB stubs in HAL File
11clude GDB external break support for stubs Enabled False
e' clude GDB extemal break support when no stubs DefaultValue CYGDBG_HAL DEBUG_GDB_INCLUDE_STUBS
, . Activelf CYGINT _HAL DEBUG_GDB_STUBS_BREAK
I Include GDB muiti-threading debug support Requires CYGDBG HAL DEBUG GDB_INCLUDE STUBS

[ab] Number of times to retry sending a $0 packet 0
[ab] Timeout period for GDB packets 500
8 Location of CRC32 table RAM
P (3 ROM monitor support
W File I/O operations via GDB
" Build Compiler sanity checking tests

[EE] Common HAL tests tests/c
P %% FUJITSU architecture v3 D

Figure: Enabling features

4. Semantic Constraints

Capturing the configurator behavior

- D source-level dehugg|ng suppnrt Macro CTGDBG_HAL_DEBUG_GDB_BREAK_SUPPGM
™ Include GDB stubs in HAL File
11clude GDB external break support for stubs Enabled False
e' clude GDB extemal break support when no stubs DefaultValue CYGDBG_HAL DEBUG_GDB_INCLUDE_STUBS
, . Activelf CYGINT _HAL DEBUG_GDB_STUBS_BREAK
I Include GDB muiti-threading debug support Requires CYGDBG HAL DEBUG GDB_INCLUDE STUBS

[ab] Number of times to retry sending a $0 packet 0
[ab] Timeout period for GDB packets 500
8 Location of CRC32 table RAM
P (3 ROM monitor support
W File I/O operations via GDB
" Build Compiler sanity checking tests

[EE] Common HAL tests tests/c
P %% FUJITSU architecture v3 D

Figure: Providing the data

3. Semantic Constraints

Capturing the configurator behavior

> [Source- i Macro CYGDBG_HAL DEBUG_GDB_BREAK_SUPPORT
Include GDB stubs in HAL File
E— Enabled False

Wt Include GDB external break support for s2ibs

B Include GDB extemal break support when no ST DefaultValue CYGDBG_HAL DEBUG_GDB_INCLUDE_STUBS

¥ Include GDB multi-threading debug support

i) Requires CYGDBG_HAL DEBUG GDB_INCLUDE STUBS
[ab] Number of times to retry sending a $0 packet 0 ~—
[ab] Timeout period for GDB packets 500
8 Location of CRC32 table RAM

P (3 ROM monitor support
W File I/O operations via GDB
" Build Compiler sanity checking tests

[EE] Common HAL tests tests/c
P %% FUJITSU architecture v3 0

Figure: A constraint

4. Semantic Constraints

Capturing the configurator behavior

p Resolve conflicts x

| Continue | | Cancel | |l|

Conflict Property
Unsatisfied Reqmres CYGDBG_HAL DEBUG GDB_INCLUDE_STUBS

Heqt.llres rC"[’IE[)}E!G HAL DEBUG GDB_BREAK _ SUPPOR

Item
CYGDBG_HAL_DEBUG_GDB...
CYGDBG_HAL DEBUG_GDB... Unsatisfied

: MNone All
Proposed Solutions:
Item Value
[CYGDBG HAL DEBUG G... Disabled -
¥ CYGSEM_HAL USE ROM... Disabled... D
¥ CYGDBG_HAL DIAG TO... Enabled
¥ CYGDBG_HAL DEBUG G... Enabled v

Figure: Conflict

4. Semantic Constraints

Capturing the configurator behavior
We transform the model:

®m Enable state variables - enabled var
m Data variables - data var
m Constraints mapping the conflicts

4. Semantic Constraints

Semantic constraints classification:

®m Purely Boolean
> Enabled state variables
> Boolean operators

®m Purely non-Boolean
> Data state variables
> non-Boolean operators - relational, string, arithmetic

® Mixed

4. Semantic Constraints

Number of constraints: ,,, _
616 Med!an String:
686 M.a)qmum 300 — LIBS data |var
593 Minimum contains
200 — libtarget.a

_ 100 —
Median number of
variables: 0 -
420 Data | | |

: Purely Purely

521 Enabled Mixed (202) Boolean (412) non-Boolean (2)

Figure: Number of occurrences

median value -

5. Semantic Expansion - Patterns

Sample eCos pattern:
(1 <
(

((
(RTC_NUMERATOR data *

(((0OSC_MAIN data * PLL MULTIPLIER data) / PLL DIVIDER data)/2)

)
/ (TIMER TC enabled ? 32 : 16)
) /RTC_DENOMINATOR data)/ 1000000000

)
)

5. Semantic Expansion - Patterns

Patterns:
axyY z b, max. occurrences = 2
axXY /Z i b, max. occurrences = 2
aXY /PZ < b, max.occurrences =1
axXYZ/(a+B)PQ 2 b, max. occurrences = 2

I\

More details in the paper

B Boolean, number and string operator occurrence
frequency at semantic and syntactic
B Explanation of the semantics

B All 116 models as Clafer models are available @
http://gsd.uwaterloo.ca/FOSD11

Conclusions

B Studied 116 real-world non-Boolean FM

B ~50% of features are non-Boolean (numbers and strings)
B ~/0% of constraints are non-Boolean

B Some constraints are complex (e.g. non-linear)

B Provided 116 models as a benchmark for tool builders

B Such non-Boolean models are likely to occur in embedded
systems

Future:

B Provide reasoning techniques that work on these
constraints

Thank you!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

